Respuesta :
[tex]\bf ~~~~~~ \stackrel{Sheldon}{\textit{Compound Interest Earned Amount}}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$15000\\
r=rate\to 3\%\to \frac{3}{100}\to &0.03\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{annually, thus once}
\end{array}\to &1\\
t=years\to &12
\end{cases}
\\\\\\
A=15000\left(1+\frac{0.03}{1}\right)^{1\cdot 12}\implies A=15000(1.03)^{12}\implies A\approx 21386.41[/tex]
[tex]\bf -------------------------------\\\\ ~~~~~~ \stackrel{Howard}{\textit{Compound Interest Earned Amount}} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$15000\\ r=rate\to 6\%\to \frac{6}{100}\to &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &5 \end{cases}[/tex]
[tex]\bf A=15000\left(1+\frac{0.06}{1}\right)^{1\cdot 5}\implies A=15000(1.06)^5\implies A\approx 20073.38[/tex]
compare them away.
[tex]\bf -------------------------------\\\\ ~~~~~~ \stackrel{Howard}{\textit{Compound Interest Earned Amount}} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to &\$15000\\ r=rate\to 6\%\to \frac{6}{100}\to &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &5 \end{cases}[/tex]
[tex]\bf A=15000\left(1+\frac{0.06}{1}\right)^{1\cdot 5}\implies A=15000(1.06)^5\implies A\approx 20073.38[/tex]
compare them away.