Respuesta :
so hmmm notice the picture below
"x" being how many seconds the object was going
and when y = 0, the object hits the ground, either on the moon or on earth
so, if we set y = 0 on each equation, we'll know when that happen, how long of a "x-value" or seconds it took
[tex]\bf \begin{array}{llll} \textit{on the moon}\\\\ h=-2.7t^2+96t\implies 0=t(96-2.7t) \end{array} \quad \begin{cases} 0=t\\ -------\\ 0=96-2.7t\\ 2.7t=96\\ t=\frac{96}{2.7}\\ t\approx 35.\overline{55} \end{cases}\\\\ -------------------------------\\\\ \begin{array}{llll} \textit{on earth}\\\\ h=-16t^2+96t\implies 0=t(96-16t) \end{array} \quad \begin{cases} 0=t\\ ------\\ 0=96-16t\\ 16t=96\\ t=\frac{96}{16}\\ t=6 \end{cases}[/tex]
"x" being how many seconds the object was going
and when y = 0, the object hits the ground, either on the moon or on earth
so, if we set y = 0 on each equation, we'll know when that happen, how long of a "x-value" or seconds it took
[tex]\bf \begin{array}{llll} \textit{on the moon}\\\\ h=-2.7t^2+96t\implies 0=t(96-2.7t) \end{array} \quad \begin{cases} 0=t\\ -------\\ 0=96-2.7t\\ 2.7t=96\\ t=\frac{96}{2.7}\\ t\approx 35.\overline{55} \end{cases}\\\\ -------------------------------\\\\ \begin{array}{llll} \textit{on earth}\\\\ h=-16t^2+96t\implies 0=t(96-16t) \end{array} \quad \begin{cases} 0=t\\ ------\\ 0=96-16t\\ 16t=96\\ t=\frac{96}{16}\\ t=6 \end{cases}[/tex]