Respuesta :
Answer:
Silver
Step-by-step explanation:
Find the volume of the coin
Volume of a cylinder
[tex]\textsf{V}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]
Given:
- r = 1.5 cm
- h = 0.25 cm
Substituting given values into the formula to find the volume:
[tex]\sf \implies V=\pi (1.5)^2(0.25)[/tex]
[tex]\sf \implies V=0.5625 \pi \:cm^3[/tex]
Find the density of the coin given it has a measured mass of 18.54 g
Density formula
[tex]\sf \rho=\dfrac{m}{V}[/tex]
where:
- [tex]\rho[/tex] = density
- m = mass
- V = volume
Given:
- m = 18.54 g
- [tex]\sf V=0.5625 \pi \:cm^3[/tex]
Substituting given values into the density formula:
[tex]\implies \sf \rho=\dfrac{18.54}{0.5625 \pi}[/tex]
[tex]\implies \sf \rho=10.49149385\:g\:cm^{-3}[/tex]
Given:
- [tex]\textsf{Density of Lead}=\sf 11.3\:g\:cm^{-3}[/tex]
- [tex]\textsf{Density of Silver}=\sf 10.49\:g\:cm^{-3}[/tex]
Therefore, as [tex]\sf \rho=10.49\:g\:cm^{-3}[/tex] the coin is made from silver.