Respuesta :
Answer:
Distance: [tex]\sqrt{13}[/tex] units
Step-by-step explanation:
The distance formula is [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] where:
- [tex]d[/tex] is the distance between points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
- [tex](x_1,y_1)[/tex] are the coordinates of the first point
- [tex](x_2,y_2)[/tex] are the coordinates of the second point
We are given that:
- [tex](x_1,y_1)=(-8,10)[/tex]
- [tex](x_2,y_2)=(-6,7)[/tex]
To determine the value of our distance, [tex]d[/tex], we plug in our given information into the formula and solve for
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6-(-8))^2+(7-10)^2}[/tex]
[tex]d=\sqrt{(-6+8)^2+(-3)^2}[/tex]
[tex]d=\sqrt{(2)^2+(-3)^2}[/tex]
[tex]d=\sqrt{4+9}[/tex]
[tex]d=\sqrt{13}[/tex]
Therefore, the distance between [tex](-8,10)[/tex] and [tex](-6,7)[/tex] is [tex]\sqrt{13}[/tex] units.
See the attached graph for a visual.