Respuesta :
1.
simle
properties of exponents
[tex](xy)^m=(x^m)(y^m)[/tex]
and
[tex](x^m)(x^n)=x^{m+n}[/tex]
and
[tex]x^ \frac{m}{n}= \sqrt[n]{x^m} [/tex]
first split it up
[tex](6h)^ \frac{2}{3}(2h)^2 [/tex]=
[tex](6^\frac{2}{3})(h^\frac{2}{3})(2^2)(h^2) [/tex]=
[tex](\sqrt[3]{h^2})(h^2)(4)(\sqrt[3]{6^2}) [/tex]=
[tex](\sqrt[3]{h^2})(h^2)(4)(\sqrt[3]{36}) [/tex]
[tex](\sqrt[3]{h^2})(\sqrt[3]{36})(h^2)(4) [/tex]
[tex](\sqrt[3]{36h^2})(4h^2) [/tex]=
[tex]4h^2\sqrt[3]{36h^2} [/tex]
1/2 and 4/7 and 5/9
2*7*9=126
1/2 times 63/63=63/126
4/7 times 18/18=72/126
5/9 times 14/14=70/126
acending
63/126<72/126<70/126
1/2<5/9<4/7
answer is D
simle
properties of exponents
[tex](xy)^m=(x^m)(y^m)[/tex]
and
[tex](x^m)(x^n)=x^{m+n}[/tex]
and
[tex]x^ \frac{m}{n}= \sqrt[n]{x^m} [/tex]
first split it up
[tex](6h)^ \frac{2}{3}(2h)^2 [/tex]=
[tex](6^\frac{2}{3})(h^\frac{2}{3})(2^2)(h^2) [/tex]=
[tex](\sqrt[3]{h^2})(h^2)(4)(\sqrt[3]{6^2}) [/tex]=
[tex](\sqrt[3]{h^2})(h^2)(4)(\sqrt[3]{36}) [/tex]
[tex](\sqrt[3]{h^2})(\sqrt[3]{36})(h^2)(4) [/tex]
[tex](\sqrt[3]{36h^2})(4h^2) [/tex]=
[tex]4h^2\sqrt[3]{36h^2} [/tex]
1/2 and 4/7 and 5/9
2*7*9=126
1/2 times 63/63=63/126
4/7 times 18/18=72/126
5/9 times 14/14=70/126
acending
63/126<72/126<70/126
1/2<5/9<4/7
answer is D