Use Boolean algebra to simplify the given Boolean expression. Determine the minimum (i.e. simplest) expression. F(A, B, C) = A.B.C + A. B'.C + A'. B.C + A.B.C' a) F = A.C + A'.B.C + A.B.C'b) F = A.B'.C + B.C + A.B.C'c) F = A'. B.C + A. B'.C + A.Bd) F = A.B + A.C + B.Ce) F = A.B'.C + A'. B.C + A.B.C'

Respuesta :

Answer:C

Step-by-step explanation:

A.B.C+A.B'.C+A'.B.C+A.B.C'

By distributive law : A.B.C+A.B.C' = A.B(C+C')

By complement law: C+C'=1, so

A.B(C+C')=A.B

Therefore the answer will be A.B'.C+A'.B.C+A.B

Otras preguntas

Q&A Platform for Education
Platform Explore for Education