Respuesta :
Answer:
[tex]s=1.1107\ m[/tex] is the minimum depth of snow for survivable stopping.
Explanation:
Given:
- terminal velocity of fall, [tex]u=56\ m.s^{-1}[/tex]
- mass of the paratrooper, [tex]m=85\ kg[/tex]
- force on the paratrooper by the ice to stop him, [tex]F=1.2\times 10^5\ N[/tex]
Firstly, we calculate the deceleration caused in the snow:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{120000}{85}[/tex]
[tex]a=1411.765\ m.s^{-2}[/tex]
Now, using equation of motion:
[tex]v^2=u^2+2a.s[/tex] ....................(1)
where:
v = final velocity of the body after stopping
u = initial velocity of the body just before hitting the snow
a = acceleration of the body in the snow
s = distance through in the snow
Putting respective values in eq. (1)
[tex]0^2=56^2+2\times (-1411.765)\times s[/tex]
[tex]s=1.1107\ m[/tex]