Respuesta :

Answer:

The expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd

Step-by-step explanation:

Let's remember the logical operations with even and odd numbers

odd*odd=odd

even*even=even

odd*even=even

odd-odd=even

even-even=even

even-odd=odd

Now, the original expression is:

[tex]m^3-n^3[/tex] which can be expressed as:

[tex](m*(m*m))-(n*(n*n))[/tex]

If m and n are both odd, then:

[tex](m*(m*m))=odd*(odd*odd)=odd*(odd)=odd[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=odd-odd=even[/tex]

If m and n are both even, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-even=even[/tex]

Finally if one of them is even, for example m, and the other is odd, for example n, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-odd=odd[/tex]

In conclusion, the expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd. If one of them is even and the other one is odd, then the expression is odd.

Otras preguntas