Find the general solution to the nonhomogeneous equation given that y = eᵗ is a particular solution to this equation: y'' - 3y' - 4y = 0. a) y(t) = c₁e(4t) + c₂e(-t) + eᵗ 2t² b) y(t) = c₁e(4t) + c₂e(-t) + eᵗ (2t² + 1) c) y(t) = c₁e(4t) + c₂e(-t) + eᵗ (2t² - 1) d) y(t) = c₁e(4t) + c₂e(-t) + eᵗ (2t² - t)